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Abstract. Multi-model ensembles (MME) are key ingredients for future climate projection and the quantification of its 

uncertainty. Developing robust protocols to design balanced and complete computer experiments for MME is a matter of active 

research. In this study, we take advantage of a large-size MME produced for Greenland ice sheet contributions to future sea 

level by 2100 to define a series of computer experiments that are closely related to practical MME design decisions: what is 15 

the added value of including specific set of experiments in the projections, i.e. either adding new models (Regional Climate 

Model RCM, or Ice Sheet Model ISM) or extending the range of some parameter values. By using these experiments to build 

a random-forest-based emulator, changes in the emulator’s predictive performance and the emulator-based probabilistic 

projections provided information on several aspects: (1) the utmost importance of including the SSP5-8.5 scenario, due to the 

large number of simulations available and the range of global warming they cover; (2) the importance of having diverse ISM 20 

and RCM models; (3) the lesser importance of the choice in the range of the Greenland tidewater glacier retreat parameter. We 

expect these recommendations to be informative for the design of next generations of MME, in particular for the next Ice Sheet 

Model Intercomparison Project ISMIP7 in preparation. 

1 Introduction 

Multi-model ensembles (MME) are key ingredients for future climate projection and the quantification of its uncertainty. They 25 

consist of co-ordinated sets of numerical experiments performed under common forcing conditions with different model 

designs (i.e. different model formulations, input parameter values, initial conditions, etc.) to generate multiple realisations 

known as ensemble members. This is the approach of Model Intercomparison Projects, MIPs, which are key for the 

understanding of past, present, and future climates and contribute to assessments from the Intergovernmental Panel on Climate 

Change (IPCC: e.g. Lee et al., 2021). In this study, we are interested in projected Greenland ice sheet contributions to sea level 30 
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change this century, which are the subject of recent MME studies (Goelzer et al., 2018; 2020) within the Ice Sheet Model 

Intercomparison Project for CMIP6 (ISMIP6: Nowicki et al., 2016; 2020). 

However, interpreting MME results is complicated by the choices made in their construction (e.g. Knutti et al., 2010). Ideally, 

each member of a MME should evenly span a representative and exhaustive set of plausible realisations of the combined 

sources of uncertainty, e.g. distinct climate models with different but plausible strategies for simulating the global climate 35 

(GCMs), equally represented by a single model run. However, members of a MME are often structurally similar, and the 

degree of their dependence is difficult to quantify (e.g. Merrifield et al., 2020). This difficulty is particularly emblematic of 

the Coupled Model Intercomparison Project (CMIP), coined an “ensemble of opportunity” (Tebaldi and Knutti, 2007) because 

it collects “best guesses” (Merrifield et al., 2020) from modelling groups with the capacity to participate. This capacity may 

range from substantial resources to develop climate models and perform relatively large ensembles through to the ability to 40 

perform only a small number of simulations with an existing version of a climate model. These disparities, combined with the 

high computational expense of climate models and the partial dependence of MME members, results in limited and unbalanced 

multi-model ensemble designs, in which various combinations of modelling choices and forcing conditions are either over-

represented or missing in the MME, and a full sampling of modelling uncertainties is impossible to perform or even to define. 

Section 2.1 provides in the following an illustration for the MME considered in this study. 45 

Emulators (also named surrogate models) have been proposed to address these limitations. An emulator is a fast statistical 

approximation of a computationally expensive numerical model, often building on machine learning techniques. Their key 

advantage is that they can be used to predict the numerical model’s response at untried input values, to explore the uncertain 

input space far more thoroughly: potentially overcoming the incompleteness of ensemble designs and being used to produce 

probabilistic projections. 50 

Some emulation studies have broadened this approach to represent entire MME at once, rather than individual models. One 

example in this field is provided by Edwards et al. (2021), who emulate ISMIP6 simulations for the Greenland and Antarctic 

ice sheets and multi-model glacier ensembles, driven by multi-model climate model ensemble simulations, to estimate land 

ice contributions to twenty-first-century sea level rise. Emulating an MME requires an assumption (and check) that the 

simulations are quasi-independent: i.e. that the differences induced by different model setups (in particular, initialisation) 55 

outweigh any similarities induced by common model structures. This was found by Edwards et al. (2021) to be the case for 

ice sheet and glacier MMEs. Another type of application is provided by Van Breedam et al. (2021) who used emulators to 

perform a large number of sensitivity tests with numerical simulations of ice sheet–climate interactions on a multi-million-

year timescale.  

In this study, we aim to explore how the results provided by an emulator can be informative for the design of an MME. Key 60 

design questions relate to the added value of including specific sets of experiments in the projections, i.e. either adding new 

models (e.g. new Regional Climate Model, RCM, new GCM, etc.) or extending the range of some parameter values (e.g., the 

Antarctic basal melt parameter or Greenland tidewater glacier retreat parameter described by Edwards et al. (2021)). To address 

these questions, we take advantage of a large MME of Greenland ice sheet contributions to sea level this century, based on 
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which we define a series of validation tests (referred to as emulator’s experiments) that are closely related to practical MME 65 

design decisions. The evaluation of the emulator prediction capability with each of these experiments is used to provide 

information on the added value of including specific set of experiments. 

The paper is organized as follows. We first describe the sea level numerical simulations as well as details of the statistical 

methods used to build the emulator and assess the different design questions (Section 2). In Section 3, we apply the experiments 

and assess the influence of each design question. We discuss results in Section 4, and we draw lessons and guidance related to 70 

the MME design, and discuss the implications from a stakeholder’s point of view. Finally, we conclude in Section 5. 

2. Data and methods 

2.1 Multi-model ensemble case study 

We focus on the sea level contribution from the Greenland ice sheet (GrIS) in 2100 based on a new MME study performed for 

the European Union’s Horizon 2020 project PROTECT (http://protect-slr.eu). Some modelling choices are taken from the 75 

protocols of the ISMIP6 initiative (Goelzer et al. (2020): in particular, the two main emissions scenarios, and the main model 

parameter explored. In the following, we provide a brief summary of the GrIS MME dataset and refer the interested reader to 

Goelzer et al. (2020) and references therein for further details, where appropriate.  

The full modelling chain for these projections combines: (1) a number of CMIP5 and CMIP6 GCMs that produce climate 

projections according to different emissions scenarios; (2) two Regional Climate Models (RCMs), and their variants, that 80 

locally downscale the GCM forcing to the GrIS surface; (3) a range of ISM models that produce projections of ice mass 

changes and sea level contributions (initialised to reproduce the present-day state of the GrIS as best as possible, at a given 

initial year sometime before the start of emissions scenarios in 2015). The ISMs are forced by surface mass balance (SMB) 

changes from the RCMs, added to their own reference SMB assumed during initialisation. Marine-terminating outlet glaciers 

are in turn forced by an empirically-derived parameterisation that relates changes in meltwater runoff from the RCM and ocean 85 

temperature changes from the GCMs to the retreat of calving front positions (Slater et al., 2020). The parameter that controls 

retreat is denoted  and is used to sample uncertainty in the parameterisation (Slater et al., 2019).  

In what follows, we use the generic term ‘inputs’ to designate all the choices made throughout the modelling chain, i.e. the 

choices in the models used, the choices in the scenarios and the parameter values. The inputs are described in detail in Table 

1. It should be noted that the two first inputs, i.e. the choice in the SSP-RCP scenario and in the GCM model, are not considered 90 

for the emulator construction described in Sect. 2.2. They are combined with a similar approach as Edwards et al. (2021), by 

relating each ‘SSP-RCP, GCM’ combination to the corresponding value of global annual mean surface air temperature change 

since 2015, denoted GSAT.  

 

 95 
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Table 1: Inputs considered in the GrIS MME. The inputs listed below the double line are those used for the building of the RF 

emulator described in Sect. 2.2. 

Type Symbol Type of variable Value range / Categories 

Future climate and 

societal conditions 

SSP-RCP Categorical 5 scenarios: three Shared Socio-economic Pathways (SSP1-2.6, SSP2-

4.5, SSP5-8.5) and two Representative Concentration Pathways 

(RCP2.6, RCP8.5). The latter, older, scenarios are grouped with the 

nearest equivalent SSPs (RCP2.6 with SSP1-2.6; RCP8.5 and SSP5-

8.5). 

General Circulation 

Model 

GCM Categorical 15 global climate models: ACCESS1.3, CESM2, CESM2-Leo*, 

CESM2-WACCM, CNRM-CM6-1, CNRM-ESM2-1, CSIRO-Mk3.6.0, 

HadGEM2-ES, IPSL-CM5A-MR, IPSL-CM6A-LR, MIROC5, MPI-

ESM1-2-HR, NorESM1-M, NorESM2-MM, UKESM1-0-LL-r1 

Global mean temperature 

change 2015−2100 

GSAT change Continuous The joint influence of SSP-RCP and GCM is treated with a similar 

approach as Edwards et al. (2021), by relating each ‘SSP-RCP and 

GCM’ combination to the corresponding value of global annual mean 

surface air temperature change since 2015. 

Ice Sheet Model ISM Categorical 4 models: CISM, Elmer/Ice, GISM, IMAUICE 

Regional Climate Model RCM Categorical 6 model approaches: four versions of the RCM MAR (v3.9, v3.12, 

v3.13-e05, and v3.13-e55), one version of the RCM RACMO (v2.3p2), 

and statistical downscaling (SDBN1). 

Retreat parameter  Continuous From -0.9705 to +0.0070 km.(m3.s-1)-0.4 °C 

Minimal spatial 

resolution 

res_min Continuous From 1 to 40 km 

Sliding basal Law Sliding Categorical 5 laws: Coulomb, Linear, Schoof, Weertman, Zoet-Iverson 

Account for 

thermodynamics 

thermodin. Categorical TRUE or FALSE 

RCM used for 

initialisation 

RCM_init Categorical 4 model variants: IMAU-ITM, and MAR (v3.9, v3.11.5, and v3.12). 

Type of initialisation 

method 

Init Categorical Data assimilation based on velocities (DAv); nudging to ice mask 

(NDm); or nudging to surface elevation (NDs). 

Number of years of the 

initialisation period 

init_yrs Continuous From 20 to 240,000 years 

Location of the surface 

elevation feedback  

elev_feedback Categorical In the ice sheet model (with two formulations of the SMB-elevation 

gradient, X or B), or in the regional climate model RCM. 

*CESM2-Leo is a variant pre-dating the official CESM2 release for CMIP6. It can be considered as another ensemble member of CESM2. 

 100 
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One input setting defines a member of the MME. Formally, the inputs are either treated as continuous variables (e.g., for , 

minimum resolution), or as categorical variables (e.g., RCM or ISM choice). The considered MME comprises n=1,303 

members, which are used to estimate the sea level contribution in 2100 (denoted slc expressed in meters sea level equivalent 

SLE) with respect to 2015. Figure 1 shows a probability density distribution of slc constructed directly using the members of 

the MME, which has a median value of 8.7 cm SLE and 5% and 95% quantiles of 3.1 and 19.9 cm; the latter being used to 105 

define the 90% credibility interval.  

 

Figure 1: (a) Probability density function of the sea level contribution in 2100 (with respect to 2015) from the Greenland ice-sheet 

(in cm seal level equivalent, SLE) based on the raw MME ensemble data considered in this study. The black straight line is calculated 

from a Gaussian kernel density estimation with a bandwidth chosen by following Silverman (1986)'s ‘rule of thumb’. The median 110 
value and the 90% credibility interval are also indicated. 

 

Figures 2 and 3 show the histograms for a selection of the continuous and categorical variables described in Table 1. For sake 

of space, we focus here on the 7 of 11 variables identified to have the highest importance with respect to slc (see Sect. 3 and 

Appendix B). Figure 2 shows that the design of experiments is clearly unbalanced for some categories, e.g. Elmer/Ice and 115 

GISM models for the choice in the ISM, SDN1 for the choice in the RCM, and the use of a RCM for the choice in the approach 

to represent the feedback between the ice sheet surface elevation and climate (variable named elev_feedback). Unbalanced 

distributions are also clear for continuous variables as shown in Fig. 3. Furthermore, gaps in the distributions are outlined, e.g. 

 between -0.9705 and -0.3700 km.(m3.s-1)-0.4 °C and the minimum spatial ISM resolution between 20 and 40 km. Both Figures 

2 and 3 illustrate the unbalanced and incomplete nature of the design of experiments. 120 
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Figure 2: Count number of the MME members with respect to the different inputs classified as “categorical” in Table 1: ISM (ice 

sheet model), RCM (regional climate model used for downscaling climate projections), RCM init (regional climate model used for 

initialisation climate), and elev_feedback (approach to representing the feedback between the ice sheet surface elevation and 125 
climate). 

 

 

Figure 3: Count number of the MME members with respect to the different inputs classified as “continuous” in Table 1:  (ice sheet 

tidewater glacier retreat parameter), minimum spatial resolution of the ice sheet model, and GSAT diff (global mean surface air 130 
temperature change during the driving global climate model simulation) . 
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2.2 Setting up the emulator 

The objective is to evaluate the sea level contribution slc (with respect to a reference date) at a given time t. The chain of 

models described in Sect. 2.1, denoted f, is used to numerically simulate slc. The different models (part of the MME) are 135 

assumed to share the same characteristics, which correspond to p different inputs described in Table 1. Mathematically, a 

random variable x is assigned to each of these inputs, and the vector of p input variables is denoted by 𝐱 = {𝑥1, 𝑥2, … , 𝑥p}. The 

MME results (of size n) at a given time t are {𝑠𝑙𝑐(i), 𝐱(i)}i=1,…,n with 𝑠𝑙𝑐(i) = f(𝐱(i)). Since our knowledge on the mathematical 

relationship f is only partial and based on the n MME results, we replace f by a machine-learning-based proxy (named emulator) 

built using the MME results. The main advantage is to be able to make predictions for input configurations that are not present 140 

in the original MME dataset at a low computation time cost.  

Among the different types of emulators (see e.g., Yoo et al. (2024) for a recent overview of different options), we focus in this 

study on the Random Forest (RF) regression model, as introduced by Breiman (2001). The interested reader can refer to 

Appendix A for further technical details. RF has shown high efficiency in different sea level projection studies (Hough & 

Wong, 2022; Rohmer et al., 2022; Turner et al., 2024). More importantly, this emulator has the advantage of dealing, by 145 

construction, with different mixed types of input variables, categorical and continuous, which is a key aspect in our case (see 

Table 1).  

2.3 Emulator experiments related to design questions 

In this study, we address a series of questions described in Table 2 that are relevant for the design of MMEs. 

In general, the central concern is to investigate what is the added value of including a specific set of experiments in the 150 

projections. This could be subsets in already defined value range / categories, or subsets not currently categorised. For four 

different categories of inputs related to specific modelling choices (choice in SSP-RCP, choice in RCM, choice in ISM, and 

range of  values), the design questions are formalised in Table 2. To assess the added value of including a specific set of 

experiments in the projections, we propose to construct RF emulators by leaving out specific results from the original MME. 

The last column of Table 2 translates the design questions into a specific emulator’s experiment. Using a RF emulator trained 155 

with the complete original MME as a reference solution, we assess changes in three types of criteria: changes in the MME 

characteristics, performance of the RF emulator, and the probability estimates of slc in 2100 given future GSAT change 

scenarios, here chosen at 2°C, 3°C or 4 °C. The details of this assessment are explained in Sect. 2.4. 

 

 160 
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Table 2: Design questions and corresponding emulator’s experiments. Modelling choices are evaluated based on the RF emulator 

performance and the probability estimate of slc in 2100 given GSAT at 2, 3 or 4°C.  165 

Input Question Definition of the emulator’s experiment Name of the 

experiment 

Number of 

members* 

SSP-RCP 

scenario 

 

 

 

Does including a medium 

scenario SSP2-4.5 improve the 

results or is it enough to use the 

extreme scenarios SSP1-2.6 and 

SSP5-8.5? 

A RF emulator is trained using only the 

results for SSP1-2.6 & SSP2-4.5, i.e. 

without SSP5-8.5  

Without SSP5-

8.5: ‘woSSP585’ 

418 (32%); 

SSP1-2.6 & SSP5-8.5, without SSP2-4.5;  ‘woSSP245’ 1,114 (86%) 

SSP2-4.5 & SSP5-8.5, without SSP1-2.6 ‘woSSP126’ 1,074 (83%) 

RCM choice What is the added value of 

including a new RCM, i.e. is it 

sufficient to focus on MAR 

regional climate model (Fettweis 

et al., 2017) only? 

A RF emulator is built using only the 

results for MAR (regardless of the version: 

MARv3.12, MARv3.13-e05, MARv3.13-

e55, or MARv3.9), in particular without 

Regional Atmospheric Climate Model 

RACMO (Ettema et al., 2010). 

‘MAR’ 1,143 (88%) 

ISM choice 

 

What is the added value of 

accounting for all ISM except for 

one? 

A RF emulator is trained using only the 

results for the most selected ISM, namely 

the Community Ice Sheet Model (CISM; 

Lipscomb et al., 2019) 

‘CISM’ 851 (65%) 

 

Built without the results of CISM 

(experiment ‘woCISM’). 

‘woCISM’ 452 (35%) 

 

Range of  

values 

 

Should the design cover a large 

range of values, i.e. is it 

sufficient to focus on extreme 

values? 

A RF emulator is built using the central 

value of -0.1700 and the endpoints, of -

0.9705 and 0.007 km.(m3.s-1)-0.4 °C only, 

i.e. without intermediate values. 

‘Med. & Extr.’ 588 (45%) 

 

Built only with central and medium 

values, from -0.37 to 0 km.(m3.s-1)-0.4°C. 

‘Narrow’ 588 (55%) 

*% of the total number of members 

 

2.4 Criteria for measuring the impact of the design questions 

The first set of criteria aims to measure the extent to which the new subset of the MME differs from the original MME, with 

two indicators: (1) the percentage decrease in size (DS); (2) the changes in the histograms of the new MME subsets with respect 170 

to the original ones (as depicted in Fig. 2 and 3) for each inputs used to build the RF emulator (see Supplementary materials 

S1 for an illustration). The latter is defined as the average difference in the count numbers between the two histograms 

(normalised by the total number of members). 
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The second criterion measures the decrease in the predictive performance of the emulator, using a metric of relative error. It is 

assessed through a validation test exercise that consists in randomly selecting ntest test samples from the original MME, 175 

conducting the experiments described in Table 2, and estimating the slc error, i.e. 𝑒(i) = 𝑠𝑙𝑐(i) − 𝑠𝑙𝑐̂(i) by comparing the true 

and the RF emulator’s predicted value for each test sample i=1,…,ntest. To ensure that the test samples cover a broad range of 

situations, they are selected randomly as follows: (1) the GSATs are classified into a finite number of intervals, the ends of 

which are defined by the GSAT percentiles, with levels ranging from 0 to 100% with a fixed increase of 10%; (2) for each 

interval, five samples are randomly selected. For one iteration of the procedure, a total of ntest=55 test samples are randomly 180 

selected, and the mean relative error is estimated, 𝑅𝐴𝐸 =
1

𝑛test
∑ |

𝑒(𝑖)

𝑠𝑙𝑐(𝑖)|
𝑛test
𝑖=1  (quoted as a percentage). This predictive 

performance indicator measures whether the RF emulator is capable of predicting simulated slc with high accuracy given yet-

unseen instances of the inputs. A high predictive capability is achieved for a low RAE value. 

Finally, the third set of criteria measures the changes in the emulator-based probabilistic projections, which are assessed 

through a Monte-Carlo random sampling procedure. For fixed GSAT change values, the input variables are randomly sampled 185 

by assuming a uniform discrete probability distribution for the categorical variables, and a uniform probability distribution for 

the continuous variables except for  which is sampled as in (Edwards et al. 2021) from the smoothed version of the empirical 

density function by Slater et al. (2019). The changes in the median and the endpoints of the 90% credibility interval (defined 

by the percentile at 5 and 95%, denoted Q5% and Q95%) are then quantified. 

3. Results 190 

3.1 Emulator reference solution 

We train a RF model to predict slc in 2100 using the results of the GrIS MME. A preliminary screening analysis was conducted 

(detailed in Appendix B), and showed that four predictor variables have no significant influence: the choice to account for 

thermodynamics, the choice in sliding law, the type of initialisation and the number of years for the initialisation phase. We 

therefore build the RF emulator using only 7 out of 11 possible input variables described in Sect. 2.  195 

To select values for the two main RF parameters, node size (ns) and the number of variables to randomly sample as candidates 

at each split (mtry), we use a 10-fold cross validation exercise (Hastie et al., 2009) varying ns from 1 to 10, and mtry from 1 to 

7, and selecting the most optimal combination with respect to cross-validation predictive error. The number of random trees is 

fixed at 1,000; preliminary tests having showed that this latter parameter has little influence provided that it is large enough.  

 200 

https://doi.org/10.5194/egusphere-2025-52
Preprint. Discussion started: 13 February 2025
c© Author(s) 2025. CC BY 4.0 License.



10 

 

 

Figure 4: (a) Comparison between the true numerically computed slc and the emulator’s predicted values for the 25 validation tests 

(described in Sect. 2.4). Each colour indicates a different iteration of the testing; (b) Boxplot of the RAE performance indicator over 

the 25 validation tests. The lower RAE, the higher the predictive capability. 

 205 

On this basis, we compute the reference solution for the criteria used to investigate the influence of the design questions. First, 

the changes in the MME size and distributions of the members resulted from random validation tests are assessed (see details 

in Sect. 3.2). Then, the RF model’s predictive performance is tested by applying the 25 random validation tests, as described 

in Sect. 3.2. Figure 4a shows the comparison between the “true” numerically computed slc and the emulator’s predicted values. 

The dots align relatively well along the 1:1 line, which indicates a high predictive capability. This is confirmed by the 210 

performance indicator RAE which reaches very satisfactory values, with a median value well below 10% (Figure 4b). Finally, 

the probability distribution of slc (Figure 5) is constructed using the Monte-Carlo-based procedure (with 10,000 random 

samples) described in Sect. 2.4 given three GSAT change values fixed at 2°C, 3°C and 4°C. This results in a median value of 

respectively 4.7cm, 6.9cm and 10.5cm for slc with a 90% credibility interval of [3.7; 6.3cm], of [6.9; 8.7cm] and [8.5; 13.5cm].  
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 215 

Figure 5: Probability density function of slc in 2100 (with respect to 2015) constructed using a combined RF emulator - Monte-

Carlo-based procedure (with 10,000 random samples, see Sect. 2.4) for three GSAT change values of 2°C (green), 3°C (yellow), and 

4°C (orange). This results in a median value of respectively 4.7cm, 6.9cm and 10.5cm with a 90% credibility interval of [3.7; 6.3cm], 

of [6.9; 8.7cm] and [8.5; 13.5cm]. The straight line is calculated from a Gaussian kernel density estimation with a bandwidth chosen 

by following Silverman (1986)'s ‘rule of thumb’. The number and interval indicate the median value and the 90% credibility interval. 220 

3.2 Impact of design decisions on the MME characteristics 

We first analyse in Figure 6 the impact of the design decisions in terms of MME size and distributions of the members as 

measured by the indicators defined in Sect. 2.4. As expected, the larger the MME size decrease (measured by DS), the larger 

the perturbation of the histograms (measured by Dh). More interestingly, some experiments lead to different MME sizes, 

namely experiments ‘Med. & extr. Kappa’ and ‘CISM’ with DS of respectively >55% and >35%, but with an approximately 225 

equivalent impact on the members’ distributions, with Dh on the order of 20%. For experiments ‘woSSP585’ and ‘woCISM’, 

this is the opposite with different Dh values of respectively ~27% and ~37%, but with the same resulting MME size with 

DS>65%. For comparison, we also show in blue the reference solution defined as the mean value assessed over the 25 iterations 

of the random validation exercise, described in Sect. 2.4, applied to the original dataset. In Sect. 3.3 and 3.4, we assess to 

which extent these changes in the MME design translate in changes in the emulator’s performance (prediction and probabilistic 230 

projections). 
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Figure 6: Position of the emulator’s experiment in a (Dh, Ds) diagram where Ds measures the relative decrease in the MME size after 

applying the experiment, and Dh measures the deviation of the histograms from the original ones (see Sect. 2.4). The blue-coloured 

marker refers to the reference solution defined as the mean value over the 25 iterations of the random validation exercise, described 235 
in Sect. 2.4, applied to the original dataset. 

3.3 Impact of design decisions on the emulator performance 

We analyse in Figure 7 the impact of design decisions with respect to the RF predictive capability (measured by RAE defined 

in Sect. 2.4).  

 240 

Figure 7: Relative difference (in %) for the estimates of RF predictive capability measured by RAE, between the RF reference 

solution and the RF emulators trained by applying the experiment described in Table 2. The dots indicate the results of the 25 

repetitions of random validation tests (described in Sect. 2.4). 
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This shows that the design decisions regarding SSP scenarios has a strong impact depending on the particular scenarios that 

are considered. Excluding the extreme SSP scenario SSP5-8.5 (experiment ’woSSP585’) has the largest impact in terms of 245 

RAE relative difference with respect to the original RF performance (Sect. 3.1), where RAE is increased of ~10% compared to 

the original RAE value (Fig. 4). This result has a connection to the indicators described in Sect. 3.1. The ‘woSSP585’ 

experiment, which excludes SSP5-8.5 members, removes the largest number of all members (see Fig. 6), i.e. of almost 70%, 

which logically degrades the predictive capability since the RF is trained on a small dataset. Conversely, removing the 

intermediate SSP scenario, experiment ‘woSSP245’, or restricting the analysis to intermediate  values (experiment ‘Narrow 250 

Kappa’) have the lowest performance decrease (with a relative RAE difference on the order of 25%, since they result in low 

DS values (see bottom left of Fig. 6). 

However, this ‘size effect’ is not the only contributor to the performance impact, as shown by the ‘woCISM’ experiment, 

which removes an equivalent number of members to the ‘woSSP585’ experiment (Fig. 6), and the resulting RAE increase 

reaches half that of ‘woSSP585’ experiment. The experiment ‘woCISM’ has the largest impact on the member distributions 255 

as indicated by a high Dh value (see top right of Fig. 6). This shows that the second important factor here is the diversity among 

the members within the MME after applying the experiment. The Dh indicator remains, however, a first-order approximation 

of this diversity, as underlined by the design decisions concerning the choices of models, ISM (‘CISM’ and ‘woCISM’ 

experiments) and RCM (‘MAR’ experiment): they influence the predictive performance of the emulator in a similar way, with 

a relative RAE difference of about half that of the exclusion of SSP5-8.5, but with different positions in the DS-Dh diagram. 260 

The analysis of an alternative indicator of emulator’s predictive capability in Supplementary materials S2 confirms these 

results. 

3.4 Impact of design decisions on the emulator-based probabilistic projections 

We analyse here the impact on the RF-based probabilistic projections. Since the impact on the percentiles has here more 

interest from the perspective of end-users, we primarily focus the analysis on the changes in the slc percentiles, Q5%, Q95% 265 

and the median value in Fig. 8. The interested reader can refer to Supplementary materials S3 for an analysis of the whole slc 

probability distributions’ changes. Figure 8 shows that, depending on the GSAT change, the percentiles are perturbed in 

different ways. Several observations can be made: 

- Overall the design decision for  range has only a minor impact regardless of the GSAT change and the considered 

percentile. This result is in agreement with the analysis on the RF predictive capability in Sect. 3.3; 270 

- Restricting to a unique RCM, here MAR, has the largest impact on the median value for the lowest GSAT change 

scenario, resulting in a very high over-estimation >50%. Its impact on the percentiles, Q5% and Q95%, remains 

however low, which is consistent with the horizontal shift of the distribution shown in Supplementary Materials S3; 

- The design decisions for ISM (experiment with CISM and without CISM) impact all percentiles regardless of the 

GSAT changes; 275 

https://doi.org/10.5194/egusphere-2025-52
Preprint. Discussion started: 13 February 2025
c© Author(s) 2025. CC BY 4.0 License.



14 

 

- Excluding other ISMs than CISM (experiment ‘CISM’) has a high influence on the spread of the slc probability 

distribution measured by the Q95%-Q5% difference, which leads to a high overestimation up to 20% for GSAT≥3°C. 

This is consistent with the horizontal shift of the distribution as shown in Supplementary Materials S3; 

- Excluding some particular SSP-RCP scenarios has an influence for GSAT change≥3°C. This results in a moderate 

under-estimation of about -15% when excluding the extreme (in terms of radiative forcing) SSP5-8.5 scenario 280 

(experiment ‘woSSP585’) for both Q5% and the median, and with an overestimation of >10% for the median when 

excluding the intermediate SSP2-4.5 scenario. Interestingly, ‘woSSP585’ experiment has here not the largest impact 

though it resulted in the largest decrease of the emulator’s predictive performance (Fig. 6); 

- The high percentile Q95% remains unchanged for GSAT change ≤3°C regardless of the emulator’s experiment; 

- The median value is impacted moderately (of the order of 10-15%) by different experiments provided that GSAT 285 

change≥3°C. 

 

Figure 8: Relative difference (in %) between the RF reference solution and the RF model trained when considering the experiments 

indicated in the y-axis (see Table 2 for full details) for the estimates of three slc percentiles, the median and the quantile at 5% (Q5%) 

and at 95% (Q95%), considering three GSAT changes, 2°C, 3°C and 4°C. The almost blank panels in the lower left and middle 290 
indicate that the relative differences are small and very low (<1%) when invisible. 
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4. Synthesis and Discussion 

4.1 Implications for MME design 

Table 3 summarises the main results from the emulator’s experiments for each design question. In the following, we take the 

viewpoint of a MME designer, and derive the practical recommendations from these results. 295 

 

Table 3. Summary of the results from the emulator’s experiments for each design question. 

Input Question Results from the emulator’s experiments 

SSP-RCP Does including a medium scenario SSP2-4.5 

improve the results or is it enough to use the end 

members SSP1-2.6 and SSP5-8.5? 

Excluding the medium scenario has a small-to-moderate 

impact. As expected, the inclusion of SSP5-8.5 is the necessary 

condition for achieving an emulator’s high performance and 

accurate percentile estimates. 

RCM choice What is the added value of including new RCM, 

i.e. is it sufficient to focus on MAR regional 

climate model only? 

It is the most impactful decision for the median value more 

particularly for low GSAT value. 

ISM choice What is the added value of accounting for all 

ISMs except for one? 

Restricting the analysis to one unique ISM, here CISM, might 

lead to a clear over-estimation of the probabilistic projections. 

In addition, having different ISM is beneficial (experiment 

‘woCISM’), but not sufficient with possible under-estimation 

of the median values. This decision has the largest impact 

regarding the spread of the probabilistic projection (measured 

by the Q95-Q5% differences).  

Range of  values Should the design cover a large range of values, 

i.e. is it sufficient to focus on extreme values? 

This decision is the least impactful relatively to the others. 

Results suggest that restricting to the ‘Medium and Extreme’ 

scenario is sufficient.  

 

On the one hand, some conclusions were expected beforehand and more specifically for the SSP-RCP choice. The inclusion 

of SSP5-8.5 appears to be a necessary condition for achieving a high performance emulator and accurate percentile estimates, 300 

since this scenario contains many simulations and also covers a wide range of global warming levels. On the other hand, 

conclusions on the three other design questions could not have been anticipated. They support, to some extent, a posteriori, the 

choices that have been made for the construction of the MME considered here (based on that of Goelzer et al. (2020)). A very 

practical implication can be derived from the  experiments: results indicate that restricting to the extreme and medium 

scenario is sufficient here because of the lesser impact between the two experiments, ‘Med. & Extr.’ or “Narrow”. This result 305 

is interpreted as being linked to a quasi-linear relationship between  and slc. This was confirmed by analysing the partial 

dependence plot PDP of the RF emulator, which models the relationship between the input variable (here ) of interest and the 

response (here slc) while accounting for the average effect of the other input variables (see Friedman (2001) for technical 
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details). The high Pearson correlation derived from the PDP >90% confirms the evidence of quasi-linear behaviour. In practice, 

this result implies that the number of scenarios explored in the MME can be limited to a three-scenario approach (low-medium-310 

high value), i.e. the number of members can be reduced, thus reducing the number of long numerical simulations required. 

Results for RCM and ISM choice can be seen as an additional justification for intensifying the model intercomparison efforts 

initiated in the past. Both modelling choices impact the results similarly, but on different aspects, either on the best estimate, 

here measured by the median, or on the spread of the probabilistic projection, here measured by the Q95-Q5% differences. On 

the one hand, restricting the analysis to one unique ISM, here CISM, might lead to a clear over-estimation of the probabilistic 315 

projections, which means that having a diversity of ISMs is here beneficial. This is in line with the initiative originally launched 

in ISMIP6 (Nowicki et al., 2016), which included coupled ISMs as well as stand-alone ISMs in CMIP for the first time. On 

the other hand, restricting the MME to MAR only, has the most impactful decision for the median, more particularly for low 

GSAT value. The importance of the RCM choice is in agreement with other studies (e.g., Wirths et al., 2024). We have also 

completed this analysis with a ‘woMAR’ scenario, which showed a very large impact with absolute deviations >40% especially 320 

for large GSAT values (not shown). Although it reinforces our conclusions, this result can only be considered qualitatively, 

because MAR is so widely used in members (88% of the total number) that its removal from the original MME results in a too 

small training dataset. This calls however for intensifying the cooperative research efforts, potentially within a MIP, by 

extending this study to different RCM models, instead of MAR only, or investigating the relevance of using different versions 

of MAR (see Table 2). This also relates to the question of initialisation (and initial mass loss estimates) where the RCM choice 325 

is a key ingredient (e.g., Otosaka et al., 2023). 

4.2 Implications from stakeholders’ point of view 

Our work can help stakeholders in several ways. First, our study contributes to a better understanding of the contribution of 

Greenland ice sheet melt to sea level rise, which is estimated by the latest authoritative sea level projections developed by the 

IPCC (Fox-Kemper et al., 2021) at 8 cm [4 cm; 13 cm] (median [likely range]) by 2100 for the SSP2-4.5 scenario, i.e. 330 

Greenland has a non-negligible share in the total mean sea level rise, which was estimated at 56 cm [44 cm; 76 cm] for the 

same SSP2-4.5 scenario. Second, our results support coastal adaptation practitioners in their decision-making. Our emulator’s 

experiments in Sect. 3.4 highlight how the different modelling choices affect differently the median or the upper tail (here 

measured by the Q95% percentile). This difference is importance, because the literature on adaptation decision-making has 

clearly shown that knowing the median is not sufficient for coastal adaptation practitioners managing long-living critical 335 

infrastructures or making strategic decisions for regions or countries (Hinkel et al., 2019). These practitioners need credible 

assessments of the uncertainties in ice mass losses in Greenland, including for the low probability scenarios corresponding to 

the tail of probabilistic projection. Thus, our study supports the need for improved experimental designs by making some 

practical recommendations, especially regarding the consideration of ISM, RCM and RCP8.5/SSP5-8.5 simulations.  

Finally, the importance of SSP5-8.5, although expected, also underlines the fact that more extensive experiments on radiative 340 

forcing values should be considered in the future. The SSP5.8-5 scenario contains many simulations and covers a wide range 
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of global warming levels including some simulations leading to 3°C GWL by 2100. In the current set of experiments that are 

available in the literature, this means that SSP5-8.5 may be extreme in terms of radiative forcing, but it is not in terms of 

temperature. To represent plausible outcomes of failure of states to meet their own commitments or political backlashes leading 

to climate policy setbacks (see recent discussion by Meinshausen et al., 2024) assuming radiative forcing between 4.5 and 345 

7.0W/m2 in 2100 should be considered. This aspect is all the more important as another need is now emerging: projections of 

ice mass loss for specific levels of global warming (e.g. 3°C as recommended in the latest adaptation plan in France), as these 

can potentially be better understood by stakeholders than the SSP or RCP scenarios. Here again, the development of these 

projections requires emulators, whose accuracy and precision can be improved by better experimental design. 

5. Concluding remarks and further work 350 

Developing robust protocols to design balanced and complete numerical experiments for MME is a matter of active research 

that has called multiple studies either for sea level projections via selection criteria (Barthel et al., 2020) or from an uncertainty 

assessment’s perspective (Aschwanden et al., 2021), and more generally for regional impact assessment (Merrifield et al., 

2023; Evin et al., 2019). In this study, we take advantage of a large MME produced for Greenland ice sheet contributions to 

future sea level to define a series of emulator’s experiments that are closely related to practical MME design decisions. As 355 

expected, our results confirm the utmost importance of including the SSP5-8.5 scenario. Interestingly, our results also highlight 

the importance of having diverse ISM and RCM models. Finally, the less impactful choice is the one in the range of the 

Greenland tidewater glacier retreat parameter. These recommendations (detailed in Table 3) can be informative for the design 

of next generations of MME, in particular with the 7th Phase of the Coupled Model Intercomparison Project, and more 

particularly ISMIP7 in preparation (Nowicki et al., 2023).  360 

A first avenue of this study is to multiply the application of our procedure to additional MMEs of interest, in particular for 

Antarctica (Seroussi et al., 2020), for multi-millennial projections (e.g., Seroussi et al., 2024), and for glaciers (Marzeion et 

al., 2020). Though of interest to validate or highlight key design questions, our recommendations are derived, by construction, 

a posteriori, i.e., based on the available members of a large-size MME. Therefore, a second avenue here is to derive 

recommendations a priori, i.e. during the construction of the MME design ideally in an iterative manner between the phase of 365 

MME construction and that of the emulator training. From a methodological perspective, robust tools may be found in the data 

valuation domain (Sim et al., 2022), which aims to study the worth of data in machine learning models based on similar 

methods as the ones used by Rohmer et al. (2022) in the context of sea level projections. Transposed to the MME context, 

these tools could be used in future studies to assess the impact of each member in the emulator’s predictions, i.e. the worth of 

each member. This type of result is expected to serve as guidance to the MME design in particular regarding the question of 370 

completeness and the necessity for balanced design. 
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Appendix A Random Forest regression model 

Let us first denote slci=1,…,n the ith value of sea level contribution calculated relative to the ith vector of p input parameters’ 

values 𝒙i=1,…,n = {𝑥1, 𝑥2, … , 𝑥𝑝}i=1,…,n where n is the total number of experiments. The Random Forest (RF) regression model 

is a non-parametric technique based on a combination (ensemble) of tree predictors (using regression tree, Breiman et al. 505 

1984). By nature, tree models can deal with mixed types of variables, categorical or continuous. Each tree in the ensemble 

(forest) is built based on the principle of recursive partitioning, which aims at finding an optimal partition of the input 

parameters’ space by dividing it into L disjoint sets R1, …, RL to have homogeneous Yi values in each set Rl=1,…,L by minimizing 

a splitting criterion (for instance based on the sum of squared errors, see Breiman et al. 1984). The minimal number of 

observations in each partition is termed nodesize (denoted ns). 510 

The RF model, as introduced by Breiman (2001), aggregates the different regression trees as follows: (1) random bootstrap 

sample from the training data and randomly select mtry variables at each split; (2) construct ntree trees T(), where t denotes 

the parameter vector based on which the tth tree is built; (3) aggregate the results from the prediction of each single tree to 

estimate the conditional mean of sl as: 

E(𝑠𝑙|𝑿 = 𝐱) = ∑ 𝑤𝑗(𝐱)𝑠𝑙𝑗𝑛
𝑗=1 ,          (A1) 515 

where E is the mathematical expectation, and the weights 𝑤𝑗  are defined as 

𝑤𝑗(𝐱) =
∑ 𝑤𝑡(𝐱, 𝑡)

𝑛tree
𝑡=1

𝑛𝑡𝑟𝑒𝑒
 with 𝑤𝑗(𝐱,) =

I
{𝑋𝑖ϵR𝑙(𝐱,𝜶)}

#{𝑗∶ 𝑋𝑖ϵR𝑙(𝐱,𝜶)}
,        (A2) 

where I(A) is the indicator operator which equals 1 if A is true, 0 otherwise; R𝑙(𝑥,𝛼) is the partition of the tree model with 

parameter  which contains x. 
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The RF hyperparameters considered in the study are ns and mtry which have shown to have a large impact on the RF 520 

performance (Probst et al., 2019). The number of ntree was set up to a large value of 1,000 because of its smaller influence on 

the RF model performance (relative to ns and mtry). 

Appendix B Screening analysis 

We rely on the hypothesis testing of Altmann et al. (2010). To identify the significant predictor variables, the null hypothesis 

“no association between slc and the corresponding predictor variable” is tested. The corresponding p-value is evaluated by (1) 525 

computing the probability distribution of the importance measure of each predictor variable through multiple replications (here 

1,000) of permuting slc; (2) training a RF model; and (3) computing the permutation-based variable importance. When the p-

value is below a given significance threshold (typically of 5%), it indicates that the null hypothesis should be rejected, i.e., the 

considered predictor variable has a significant influence on slc. Figure B1 shows that four predictor variables have non-

significant influence with p-values well above 5%, namely the choice in the account for thermodynamics, the choice in the 530 

sliding law, the type of initialisation and the number of years for initialisation phase.  

 

Figure B1: Screening analysis showing the p-values of the RF variable importance-based test of independence of Altmann et al. 

(2010). The vertical red line indicates the significance threshold at 5%. When the p-value is below 5%, it indicates that the null 

hypothesis should be rejected, i.e., the considered variable has a significant influence, and should retained in the RF construction. 535 
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Figure B2: Count number of the MME members with respect to the variables identified as non-influential. 
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